
40 The Delphi Magazine Issue 67

Appbars And
Clipboard Viewers
by Paul Warren

Have you ever needed to moni-
tor the clipboard while you

are doing copy and paste opera-
tions between applications? If you
have, you’ve probably used the
Windows clipboard viewer. Unfor-
tunately, the clipboard viewer isn’t
the most convenient or flexible
tool. First you have to remember to
launch it, and then it always seems
to be in the way.

If you need to have a clipboard
viewer open, wouldn’t it be nice if it
could be made to ‘stick’ to the
bottom of the screen, out of the
way? It would also be nice if other
applications were aware of it so
that, when maximized, they don’t
cover, or get covered by, the
viewer. In fact, wouldn’t it be nice if
the viewer behaved just like the
Windows Taskbar? I certainly
thought it would, so I did a little
poking around in the Windows SDK
files to see how it could be done.

It seems that the API includes
methods for creating clipboard
viewer windows and also Taskbar-
like windows (called Appbars).
Appbar applications in particular
appear to have many potential
uses. So let’s get down to business
and see how to create an Appbar.

What Is An Appbar?
If you look in the Windows SDK for
‘Appbar Size and Position’ you will
find a topic that is surprisingly
lucid for Microsoft documentation.
The topic states that:

‘An application should set an
Appbar’s size and position so that
it does not interfere with any other
Appbars or the Taskbar. Every
Appbar must be anchored to a
particular edge of the screen, and
multiple Appbars can be anchored
to an edge. However, if an Appbar is
anchored to the same edge as the
Taskbar, the system ensures that
the Taskbar is always on the outer-
most edge.’

This is exactly what I wanted for
my proposed clipboard viewer. If
you look for the topic ‘Appbar Noti-
fication Messages’ in the SDK you
will find additional information
about how the system interacts
with Appbars. The topic explains
that the ‘system sends messages to
notify an Appbar about events that
can affect its position and appear-
ance. The messages are sent in the
context of an application-defined
message’. The application-defined
message is passed to the system by
a call to SHAppBarMessage(ABM_NEW,
abd) where abd is an APPBARDATA
structure maintained by the
window.

At its simplest, then, a window
becomes an Appbar when it
registers itself with SHAppBar-
Message(ABM_NEW, abd), responds
to notification messages and
unregisters itself with SHAppBar-
Message(ABM_REMOVE, abd).

The APPBARDATA Structure
As noted, our application needs to
maintain an APPBARDATA structure.
Although I could find no reference
to it in Borland’s documentation,
the unit ShellAPI defines a
TAppBarData type (along with the
various constants we will need).
Listing 1 shows the declaration
taken from the ShellAPI unit.

cbSize is the size of the data
structure and hWnd is the handle to
the Appbar window. These two
fields are needed every time you
call SHAppBarMessage.

uCallBackMessage is the applica-
tion-defined message. uEdge is a
constant describing which edge of
the screen we want to use. The
possible values are ABE_BOTTOM,
ABE_LEFT, ABE_RIGHT and ABE_TOP.
rc is a TRect to pass bounding rect-
angles to and from the system.
These last three fields are used
when calling SHAppBarMessage with
the values ABM_NEW, ABM_QUERYPOS
and ABM_SETPOS. lParam is needed to
pass specific information such as
whether a full screen application is
opening or closing.

A Basic Appbar Framework
Now we have enough background
to create a basic Appbar frame-
work. Create a new application and
set the main form’s Height prop-
erty to the height you would like
the Appbar to occupy on the
bottom edge of the screen. This is
to save adjusting the height pro-
grammatically. Set the BorderStyle
property to bsSizeToolWindow and
FormStyle to fsStayOnTop.

Now add a Memo component to
the form and set Align to alClient.
The Memo is in anticipation of
making the application into a
clipboard viewer later.

Next we need the application-
defined message to pass to the
system. I used the constant
wmAppbarMessage = wm_User as the
message constant. We also need a
message handler to respond to the
system generated notification
messages.

Now add abd: TAppBarData to the
private section of the form decla-
ration to hold the application man-
aged data.

In the FormCreate event handler
we can initialize the abd structure
and place our call to SHApp-
BarMessage(ABM_NEW, abd). Set
abd.Size equal to SizeOf(abd),

Why Not Use Align
Some of you may be saying ‘why go to all this trouble, you can set the Align
property of a form to alBottom and get the same effect’. While it’s true that
setting the Align property this way does make the form look like an Appbar,
it certainly doesn’t behave like one.

First of all, the desktop doesn’t rearrange itself as it does when an Appbar
is created. Desktop icons may get covered up and maximized windows will be
partially covered. Second, the form will get covered if you subsequently maxi-
mize a window. Finally, the forms don’t ‘stack’ when you run several of them.

March 2001 The Delphi Magazine 41

then abd.hWnd to our form’s Handle
and abd.uCallBackMessage to
wm_AppBarMessage. All the other
fields are ignored here, although
for simplicity I have set them
anyway.

According to the SDK an Appbar
first ‘proposes a screen edge and
bounding rectangle for the Appbar
by sending the ABM_QUERYPOS mes-
sage’ and the system ‘adjusts the
rectangle (if necessary), and returns
the adjusted rectangle to the applica-
tion’. At this point the application
sends an ABM_SETPOS message. The
system may adjust the proposed
bounding rectangle again, so we
use the adjusted rectangle in a call
to SetBounds. We can propose and
set the form’s initial size and
position in the FormCreate handler
after the call to SHAppBarMessage(
ABM_NEW, abd). In the FormDestroy
handler we clean up with a

call to SHAppBarMessage(ABM_REMOVE
, abd).

Because the Appbar is fre-
quently required to propose a
bounding rectangle, we’ll add a
read-only property RequestRect to
the form declaration and use a
property access method to set
RequestRect.

Finally, the SDK states ‘When-
ever an Appbar receives the
WM_ACTIVATE message, it should send
the ABM_ACTIVATE message. Simi-
larly, when an appbar receives a
WM_WINDOWPOSCHANGED message, it
must call ABM_WINDOWPOSCHANGED.
Sending these messages ensures
that the system properly sets the Z
order of any autohide appbars on
the same edge.’ Thus we need a
FormActivate event handler where
we can send the ABM_ACTIVATE mes-
sage and a WMWindowPosChanged
message handler where we can
send ABM_WINDOWPOSCHANGED. The
application framework is shown in
Listing 2.

If you were to run the application
at this stage you’d find it would
appear where it is supposed to, but
it would not respond to changes in
the Taskbar size or position. It can
also be moved around the desktop
freely, which is not correct Appbar
behaviour. To address the first
issue we need to complete the
WMAppBarMessage handler.

Responding To Appbar
Notification Messages
An Appbar may receive any of four
messages. These are ABN_FULL-
SCREENAPP, ABN_POSCHANGED, ABN_ST-
ATECHANGE and ABN_WINDOWARRANGE.

ABN_STATECHANGE is designed to
allow an Appbar to match state
with the Taskbar when the user
toggles the Stay On Top or
Autohide features. ABN_WINDOW-
ARRANGE notifies an Appbar when
the user selects cascade or tile
from the Taskbar context menu.
For this example we won’t need to
respond to these messages.

We do need to respond to
ABN_FULLSCREENAPP because, like
the Taskbar, a well-behaved
Appbar should hide itself when a
full screen application is running.
An Appbar will receive the
ABN_FULLSCREENAPP message once
when the first full screen app is
started and once when the last full
screen app is closed. The
Msg.lParam field is true if the appli-
cation is opening and false if it is
closing. Therefore we should call
Hide if Msg.lParam is True and call
Show if it is not.

Finally, we need to respond to
ABN_POSCHANGED that is called when
an event has occurred that may
affect the Appbar’s size and
position. These events include
changes in the Taskbar’s size,

_AppBarData = record
cbSize: DWORD;
hWnd: HWND;
uCallbackMessage: UINT;
uEdge: UINT;
rc: TRect;
lParam: LPARAM; {message-specific}

end;
TAppBarData = _AppBarData;

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, ShellAPI, StdCtrls;

const
wm_AppBarMessage = wm_User;

type
TForm1 = class(TForm)
Memo1: TMemo;
procedure FormCreate(Sender: TObject);
procedure FormDestroy(Sender: TObject);
procedure FormActivate(Sender: TObject);

private
abd: TAppBarData;
function GetRequestRect: TRect;
procedure WMAppBarMessage(var Msg: TMessage); message
wm_AppBarMessage;

procedure WMWindowPosChanged(var Msg: TWMWindowPosMsg);
message WM_WindowPosChanged;

property RequestRect: TRect read GetRequestRect;
public
end;

var
Form1: TForm1;

implementation
var
F: TextFile;

{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
// fill the AppBarData data structure
abd.cbSize := sizeof(abd);
abd.hWnd := Handle;
abd.uCallBackMessage := wm_AppBarMessage;
abd.uEdge := ABE_BOTTOM;
abd.rc := RequestRect;

abd.lParam := 0;
SHAppBarMessage(ABM_NEW, abd);
// set the initial size and position
SHAppBarMessage(ABM_QUERYPOS, abd);
abd.rc.Top := abd.rc.Bottom - Height;
SHAppBarMessage(ABM_SETPOS, abd);
SetBounds(abd.rc.Left, abd.rc.Bottom - Height,
abd.rc.Right-abd.rc.Left, Height);

end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
SHAppBarMessage(ABM_REMOVE, abd);

end;
procedure TForm1.FormActivate(Sender: TObject);
begin
SHAppBarMessage(ABM_ACTIVATE, abd);

end;
function TForm1.GetRequestRect: TRect;
begin
// set the requested Rect
Result.Left := 0;
Result.Top := Screen.Height - Height;
Result.Right := Screen.Width;
Result.Bottom := Screen.Height;

end;
procedure TForm1.WMAppBarMessage(var Msg: TMessage);
begin
end;
procedure TForm1.WMWindowPosChanged(var Msg:
TWMWindowPosMsg);
begin
// must send this message to maintain correct Z-order
SHAppBarMessage(ABM_WINDOWPOSCHANGED, abd);
inherited;

end;
end.

➤ Listing 1

➤ Listing 2

42 The Delphi Magazine Issue 67

position, and visibility state, as
well as the addition, removal, or
resizing of another Appbar on the
same side of the screen. To behave
correctly our Appbar must first set
abd.rc to the proposed rectangle
that is provided by the RequestRect
property. Then we call SHAppBar-
Message(ABM_QUERYPOS, abd), adjust
the rectangle and call SHAppBar-
Message(ABM_SETPOS, abd). Lastly,
we call SetBounds with the adjusted
rectangle. Listing 3 shows the com-
pleted message handler.

Our Appbar will now properly
‘stick’ to the bottom edge of the
screen and respond to changes
you make to the Taskbar or to
other Appbars. You can still move
the window away from its proper
location by dragging it, though. So
how do we fix this unwanted
behavior?

Controlling The Sizing
And Moving Rectangles
It is possible to set up a
WMWindowPosChanging message han-
dler to control an Appbar’s size
and position. In fact, this was the
first method I tried to prevent the
Appbar from moving. There is,
however, a more elegant way. If we
set up handlers for the WM_SIZING
and WM_MOVING messages we can
control the behavior of the
Appbar, as well as display sizing

and moving rectangles that only
show legal positions.

Inside the WMMoving handler we
set PRect(Msg.lParam)^ to the
current abd.rc value of the Appbar.
This way any attempt to move the
Appbar shows a fixed and
unmoving rectangle in the current
location. This indicates clearly to
the user that movement of the
window is not allowed.

Similarly, inside the WMSizing
handler we set PRect(Msg.lParam)^
to a Rect computed from the cur-
rent width and the new height. All
that remains is to call SetBounds
when the moving or sizing
operation is complete.

We could try calling SetBounds in
the WindowPosChanged handler, but
it causes unwanted side effects
because of the WindowPosChanged
messages sent during the creation
of the window. This causes the
Appbar to appear in the wrong
position.

A better place to call SetBounds is
in response to a WM_EXITSIZEMOVE
message. Inside a new message
handler we can set abd.rc.Top to
abd.rc.Bottom-Height, call Set-
Bounds and send the ABM_SETPOS
message needed to keep the regis-
tered Appbar bounds synchro-
nized with the actual bounds.
Listing 4 shows the new message
handlers.

We now have a working Appbar
that sticks to the bottom edge of
the screen and properly responds
to changes in the Taskbar size and
position. Not only that, but you can
launch several of these Appbars
and they all respond to changes in

procedure TForm1.WMAppBarMessage(var Msg: TMessage);
begin
// hide when fullscreen apps are displayed
if Msg.wParam = ABN_FULLSCREENAPP then
if Msg.lParam <> 0 then
Hide

else
Show;

if Msg.wParam = ABN_POSCHANGED then begin
// fill the AppBarData data structure
abd.rc := RequestRect;
SHAppBarMessage(ABM_QUERYPOS, abd);
abd.rc.Top := abd.rc.Bottom - Height;
SHAppBarMessage(ABM_SETPOS, abd);
SetBounds(abd.rc.Left, abd.rc.Bottom-Height,
abd.rc.Right-abd.rc.Left, Height);

end;
end;

procedure TForm1.WMMoving(var Msg: TMessage);
begin
PRect(Msg.lParam)^ := abd.rc;
inherited;

end;
procedure TForm1.WMSizing(var Msg: TMessage);
begin
PRect(Msg.lParam)^ :=
Rect(Left, PRect(Msg.lParam)^.Top, Width, PRect(Msg.lParam)^.Bottom);

inherited;
end;
procedure TForm1.WMExitSizeMove(var Msg: TMessage);
begin
abd.rc.Top := abd.rc.Bottom - Height;
SetBounds(abd.rc.Left, abd.rc.Top, abd.rc.Right-abd.rc.Left,
abd.rc.Bottom-abd.rc.Top);

SHAppBarMessage(ABM_SETPOS, abd);
inherited;

end;

➤ Above: Listing 3 ➤ Below: Listing 4

➤ Figure 1

44 The Delphi Magazine Issue 67

the Taskbar and in each other.
Figure 1 shows a number of
Appbars in action. You will find
this project on this month’s disk as
Project1.dpr. Now let’s turn this
Appbar into a clipboard viewer,
before finishing up with some
Appbar enhancements.

The Clipboard Viewer Chain
Turning our Appbar into a clip-
board viewer is relatively easy. If
you look under Clipboard Viewer
Windows in the SDK you will find a
short topic describing how clip-
board viewers function. Basically,
a viewer must add itself to the
chain of clipboard viewers using a
call to SetClipboardViewer(Handle).
The return value is the handle to
the next viewer in the chain. We
will put this call into the FormCreate
event.

Having added our Appbar to the
viewer chain we must respond to
WM_DrawClipboard messages by first
displaying the clipboard contents
and then passing the message on
to the next window in the chain.
This is done with a call to
SendMessage. Listing 5 shows the
WMDrawClipboard handler. Note that
this is a text-only clipboard viewer:

if you want to display additional
data types this is where you would
make any changes.

Clipboard viewers must also
respond to the WM_ChangeCBChain
message that is sent whenever a
window is removed from the chain.
Like the WM_DrawClipboard mes-
sage, WM_ChangeCBChain is sent to
the first window in the clipboard
viewer chain. Each window in the
chain must pass the WM_CHANGE-
CBCHAIN message to the next

window in the chain, unless the
next window is the window being
removed. In this case, the viewer
should save the handle specified
by hWndNext as the next window
in the chain. Listing 6 shows
the message handler code for
WM_ChangeCBChain.

Finally, before closing, a clip-
board viewer window must
remove itself from the clipboard
viewer chain by calling the
ChangeClipboardChain function in
the FormDestroy method.

So now we have a clipboard
viewer window that is also an
Appbar. You will find this project
on the disk as ClipView.dpr. In
Figure 2 you can see ClipView run-
ning. Now let’s enhance the origi-
nal Appbar by making it ‘stick’ to
any edge of the desktop.

Enhanced Appbar
There are only a couple of changes
needed to make our original
Appbar capable of being moved to
any edge of the screen. The first
change is to modify the GetReq-
uestRect method so that an appro-
priate bounding rectangle is
returned according to the edge we
want to attach to. Listing 7 shows
the modified method. Note that
this Appbar will not be resizable,
I’ll leave that enhancement to the
interested reader.

procedure TClipDialog.WMDrawClipboard(var Msg: TWMDrawClipboard);
begin
Memo1.Text := Clipboard.AsText;
SendMessage(CBHandle, WM_DrawClipboard, 0, 0);
inherited;

end;

procedure TClipDialog.WMChangecbchain(var Msg: TWMChangecbchain);
begin
if Msg.Remove <> CBHandle then
SendMessage(Msg.Next, WM_Changecbchain, Msg.Remove, Msg.Next)

else
CBHandle := Msg.Next;

inherited;
end;

➤ Above: Listing 5 ➤ Below: Listing 6

➤ Figure 2

➤ Listing 7

function TForm1.GetRequestRect :
TRect;

begin
// set the requested Rect
Result.Left := 0;
Result.Top :=
Screen.Height - Height;

Result.Right := Screen.Width;
Result.Bottom := Screen.Height;
case abd.uEdge of
ABE_TOP: begin
// set the requested Rect
Result.Left := 0;
Result.Top := 0;
Result.Right := Screen.Width;
Result.Bottom := Height;

end;

ABE_LEFT: begin
// set the requested Rect
Result.Left := 0;
Result.Top := 0;
Result.Right := 50;
Result.Bottom := Screen.Height;

end;
ABE_RIGHT: begin
// set the requested Rect
Result.Left := Screen.Width-50;
Result.Top := 0;
Result.Right := Screen.Width;
Result.Bottom := Screen.Height;

end;
end;

end;

March 2001 The Delphi Magazine 45

The next change is to modify the
WMMovingmessage handler. Here we
can change the drag rectangle dis-
played by the system so that it
shows only the legal locations.
Basically we divide the screen into
four regions with the diagonals. If
the cursor is in the left region we
show the drag rectangle on the left
edge and so on. Listing 8 shows the
new message handler.

Finally, we can change the form’s
BorderStyle to bsToolWindow from
bsSizeToolWindow since sizing is not
allowed (more on bsToolWindow
later). Project2.dpr on the disk
creates an Appbar on the bottom

edge of the screen and allows the
user to drag it to any other edge.
Figure 3 shows the Appbar and
moving rectangle just before it
moves to the right screen edge.

An AppToolBar
One potential use for an Appbar
is to stick a Toolbar to a screen
edge. The Toolbar would launch
services for the user (just like the
Microsoft Office Startup Toolbar).

To create an AppToolBar (this
is my terminology by the way)
all we need to do is to change
the BorderStyle property of our
form to bsNone and then change

the RequestRect property to return
the desired position.

When we run the new Appbar it
appears where it should, but if you
then resize the Taskbar our
Appbar momentarily appears
where it should and then jumps
up by a distance equal to its own
height. If we change the
BorderStyle back to bsToolWindow it
behaves correctly. What is going
on here?

Whenever the Taskbar or an
Appbar is moved or sized,
Windows sends the notification

procedure TForm1.WMMoving(var Msg: TMessage);
var
P: TPoint;

begin
GetCursorPos(P);
if (P.Y < Screen.Height/Screen.Width*P.X) and
(P.Y < -(Screen.Height/Screen.Width*P.X)+Screen.Height)
then begin
abd.uEdge := ABE_TOP;
abd.rc := RequestRect;
SHAppBarMessage(ABM_QUERYPOS, abd);
PRect(Msg.lParam)^ := abd.rc;

end;
if (P.Y >= Screen.Height/Screen.Width*P.X) and
(P.Y < -(Screen.Height/Screen.Width*P.X)+Screen.Height)
then begin
abd.uEdge := ABE_LEFT;
abd.rc := RequestRect;
SHAppBarMessage(ABM_QUERYPOS, abd);
PRect(Msg.lParam)^ := abd.rc;

end;
if (P.Y >= Screen.Height/Screen.Width*P.X) and
(P.Y >= -(Screen.Height/Screen.Width*P.X)+Screen.Height)
then begin
abd.uEdge := ABE_BOTTOM;
abd.rc := RequestRect;
SHAppBarMessage(ABM_QUERYPOS, abd);
PRect(Msg.lParam)^ := abd.rc;

end;
if (P.Y < Screen.Height/Screen.Width*P.X) and
(P.Y >= -(Screen.Height/Screen.Width*P.X)+Screen.Height)
then begin
abd.uEdge := ABE_RIGHT;
abd.rc := RequestRect;
SHAppBarMessage(ABM_QUERYPOS, abd);
PRect(Msg.lParam)^ := abd.rc;

end;
inherited;

end;

➤ Listing 8

46 The Delphi Magazine Issue 67

message to all other Appbars. It
also sends messages to all
top-level windows so that they can
adjust themselves if necessary.

Our problem is caused by the
hidden Application window. The
main form (which is our Appbar)
positions itself properly but then

procedure TForm1.CreateParams(var Params: TCreateParams);
begin
inherited CreateParams(Params);
if Params.ExStyle and WS_EX_TOOLWINDOW = 0 then
Params.ExStyle := Params.ExStyle + WS_EX_TOOLWINDOW;

end;

➤ Listing 9

the application receives the
WM_WINDOWPOSCHANGING message and
passes it to our form. The form
then repositions itself again. This
time, however, it thinks that there
is another Appbar present and
therefore sets its position above
where it should be. Windows
which have their ExStyle set to
WS_EX_TOOLWINDOW do not get the

message and so do not behave the
way they should.

The cure, then, is to set the
WS_EX_TOOLWINDOW style in an over-
ridden CreateParams method. This
way, regardless of the BorderStyle
which has been chosen, the form
will be a ToolWindow. Listing 9
shows the code for the
CreateParams method and Figure 4
shows the AppToolBar on my
computer’s desktop.

Tidying Up
One last issue is the Appbar icon
that appears on the Taskbar. In
some cases, it seems appropriate
to have the icon appear. For exam-
ple, having the icon visible with
the clipboard viewer application
seems all right. With the Toolbar,
though, it doesn’t seem right at all.

The simplest way to hide the
icon is to call ShowWindow(Applica-
tion.Handle, SW_HIDE). Apart from
an almost unnoticeable flicker,
this works just fine.

If the almost invisible flicker is
unacceptable then you need to
read Windows 95 Tray Icons by
Marco Cantu in Issue 12 for
another method of hiding the
Taskbar icon.

Summary
Appbars seem to be an overlooked
part of the Windows API. The
ability to dock a form to the edge of
the desktop strikes me as very
useful. A clipboard viewer is just
one tool I can think of that is more
convenient when docked to a
screen edge.

Even more interesting would be
docking tear-away tool windows
with the desktop. For example,
imagine that you could dock the
Delphi debug windows with the
desktop as well as with the Delphi
IDE windows. Although I haven’t
tried this yet, I can see no reason
why it couldn’t be done using the
Appbar API.

Paul Warren runs HomeGrown
Software Development in
Langley, British Columbia, Can-
ada, and can be contacted at
hg_soft@uniserve.com

➤ Above: Figure 3 ➤ Below: Figure 4

	What Is An Appbar?
	The APPBARDATA Structure
	A Basic Appbar Framework
	Why Not Use Align
	Responding To Appbar Notification Messages
	Controlling The Sizing And Moving Rectangles
	The Clipboard Viewer Chain
	Enhanced Appbar
	An AppToolBar
	Tidying Up
	Summary

